Peak Centre Academy Logo.

Predictors of Rowing Performance


January 16, 2012 by peakcentre

By Ed McNeely

The purpose of this column is to review and comment on research that is currently being done on rowing and training for endurance sports. I will try to make a link between the research and practical application for the rower.

 Reviewed Study

 The Relationship between selected physiological variables of rowers and rowing performance as determined by a 2000-m ergometer test.

 M.J. Cosgrove, J. Wilson, D. Watt, and S.F. Grant

Journal of Sport Sciences, 1999 Volume 17 pp. 845-852


This study looked at the relationship between body fat percentage, VO2 max, lactate threshold, lactate recovery, velocity at VO2 max, rowing economy and a 2000 m ergometer performance. The subjects were 13 male lightweight club rowers of varying ability with 1-9 years of rowing experience.

 The researchers found that the physiological variables that correlated most to 2000 m ergometer performance were VO2 max, lean body mass, VO2 at 4mMol of lactate (approximately lactate threshold) and lactate recovery. These findings are similar to what has been reported in some other studies.

 The researchers have suggested that based on these results lightweights who are less than the maximum allowable weight should consider adding muscle mass in order to improve their performance. I have to agree with this point. It is very difficult for a light lightweight to generate the same sort of power that someone who normally sits a few pounds above the category can generate. If you find yourself in this situation a greater emphasis should be placed on strength training during the first 2-3 months after the racing season.

 One of the conclusions of the study is that more time should be spent trying to increase VO2 max because it correlates best to ergometer performance. This is one of the few flaws in this study. While this study supports this view a single study does not look at the whole picture of what goes into designing a program or developing an athlete.

Typically, VO2 max is improved through high intensity interval training. There is no doubt that this type of speed work is important to rowers. However, increasing the time spent on this type of training will not necessarily improve performance. An aerobic base and the ability to remove lactate must be built first. Lactate removal is critical for interval training. During the recovery part of an interval if the lactate produced during the hard work is not removed the next interval will be done at a lower speed or power. If the speed of the interval decreases the interval becomes ineffective. Most rowers need to spend more time doing lower intensity base work. This type of training is common amongst the most successful international rowers who may spend as much as 80% of their training time developing an aerobic base and improving lactate threshold.

This is the first study to look at the effects of rowing economy on 2000-m ergometer performance. Rowing economy was assessed by measuring oxygen consumption at selected submaximal 500-m splits. Lower oxygen consumption at each split means the rower is more efficient at that pace. This is because the oxygen consumption is related to the amount of energy required to do the work. A more efficient rower will waste less energy. Only the efficiency at the highest workload was related to 2000-m performance. This shouldn’t be surprising since most rowers with at least a year of training will have fairly good technique during low intensity ergometer work, technical changes tend to show up at higher speeds where good technique has not yet been learned.

 This study confirmed other research that found that VO2 max is an important physiological variable for rowing. It added a new twist by assessing rowing economy. This is a variable that deserves more attention in future studies.

Questions or Comments?

three + 6 =


Visa Master Card